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We consider the propagation of an exothermic chemical front toward an unstable steady state. The hydro-
dynamic equations are solved numerically for increasing values of the activation energy of the reaction which
controls the reaction front speed. For a large speed, the marginal stability criterion of the isothermal case is
recovered. For a small speed, we observe two well-separated traveling waves: a heat front is preceding the
reaction front. We find analytically a forbidden speed interval where the hydrodynamical system does not admit
stationary traveling solutions.
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INTRODUCTION

Since the works of Fisher �1� and Kolmogorov et al. �2�,
the speed selection of reaction-diffusion fronts propagating
into an unstable state has attracted considerable attention in
the literature �3–5�. The macroscopic analysis of chemical
wave fronts has been mainly devoted to the isothermal case,
for which the marginal propagation velocity is selected.
However, chemical reactions are usually exothermic and the
concentration wave is then associated with thermal waves.
The theory of flame propagation initiated by Frank-
Kamenetskii �6� and Zel’dovich �7� is limited to the descrip-
tion of mass and heat diffusion processes �8�. In this frame,
combustion of premixed gases has been extensively studied
�7,9–11�. However, this approach fails here since the ratio of
mass diffusivity and thermal diffusivity is close to unity.

In this paper, we perform the complete hydrodynamic de-
scription of an exothermic chemical wave front propagating
in a gaseous medium. The reaction considered can be fast
and is accompanied by a heat release, that is small compared
to the thermal energy. The Fisher front is known to be sen-
sitive to small perturbations occurring in the leading edge
�4,12–19�. Macroscopic and microscopic results obtained for
a single value of the reaction front velocity have been re-
ported previously �20�. The objective of this paper is to ex-
amine the validity of the marginal stability criterion in the
presence of a heat release. We study the different types of
solutions obtained in a wide range of reaction front velocity
and expect qualitatively different behaviors depending on the
relative speed of the chemical front and the heat front.

First, the hydrodynamic equations governing the evolu-
tion of the exothermic Fisher front are numerically solved for
increasing values of the activation energy of the reaction,
leading to different reaction front speeds. Then we analyti-
cally prove the existence of a speed gap where traveling
fronts are excluded.

HYDRODYNAMIC EQUATIONS

We consider a one-dimensional infinite medium initially
divided into two adjacent parts filled with components A and
B, respectively. At the chemical interface, the following exo-
thermic reaction occurs:

A + B → 2A + heat Q . �1�

The heat release Q is small compared to kBT, where kB is the
Boltzmann constant and T is the temperature. In the isother-
mal case Q=0, the total concentration � remains constant
and the macroscopic evolution of the system is governed by
a single reaction-diffusion equation for the local concentra-
tion a of species A. This equation admits a family of wave
front solutions, moving at constant speed U and replacing the
unstable a=0 stationary state by the stable a=� stationary
state. Steep initial profiles evolve to the marginally stable
front �3� propagating with velocity U0=2�k�d, where k is
the rate constant of reaction �1� and d is the diffusion coef-
ficient of species A and B.

In the case of the exothermic chemical reaction �1�, the
dynamics of the reactive gas is governed by four balance
equations for total concentration ��x , t�, stream velocity
u�x , t�, pressure p�x , t�, and concentration a�x , t� of species
A:

�t� = − �x��u� , �2�

�tu = −
1

m�
�x�p −

4

3
�0

�T�xu� − u�xu , �3�

�tp = −
2

3
�p −

4

3
�0

�T�xu��xu − �x�pu� + f0�x��T�xT� +
2

3
QR ,

�4�

�ta = − �x�au� + d0�x��T�x�a/��� + R , �5�

where the temperature obeys T= p / �kB�� for an ideal gas. We
use the expressions of the transport coefficients for the hard
sphere model with cross section � and particle mass m

�21,22�: f0
�T=

25kB

32�
��kBT

m is the heat conductivity, d
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=d0
�T /� is the diffusion coefficient with d0= 3

8�
��kB

m , and
�0

�T= 5
12�

��kBTm is the shear viscosity. The reactive term

reads R=ka��−a� with k=4�� kBT

�m exp�− Ea

kBT
�, where Ea is the

activation energy of reaction �1�.
Complete hydrodynamic descriptions of chemical systems

have been performed for a linear consumption of the reactant
�23,24�. We consider here a nonlinear reaction scheme for
which traveling fronts exist even in the isothermal case. We
solve numerically Eqs. �2�–�5� using the Euler method. Total
concentration, stream velocity, and temperature are initially
homogeneous and fixed at �0=20 in arbitrary units, u0=0
and kBT0=1, respectively. The initial concentration profile is
a step function, with species A on the left �x�0� and species
B on the right �x�0�. The heat of the reaction is fixed at
Q=0.04kBT0. Due to the reaction, species B is transformed
into A which expands to the right of the medium. The length
is initially L=400. In order to mimic the propagation of the
front in an infinite medium �14�, we continuously check the
values of the hydrodynamic variables in the boundary layers
of length Lb=50 at the ends of the system. If the perturbation
induced by the exothermic reaction reaches a boundary layer,
we increase the system at this perturbed boundary by �L
=1. The transport coefficients are calculated for the cross
section �=0.007 942 201 044 98 and the particle mass m=1.
For these values, the width of the reaction front in the iso-
thermal case is equal to 75 for Ea=2kBT0, �=�0, and T=T0.

When the activation energy �=Ea /kBT0 increases, the re-
action rate k decreases and we expect that the reaction front
propagates more slowly. However, two qualitatively different
types of solutions are obtained as the reaction front velocity
decreases.

Figure 1 gives the profiles of the stream velocity u, the
temperature T, and a /�, for a small value of the activation
energy, �=0.5. After a transient, three steps appear on the
profile of u and four steps appear on the profile of T. The
profile of pressure p has a similar shape as the profile of u,
and the total concentration � behaves like T. For this value of
�, the fastest front, connected with the single step of a /�, is
the reaction interface. For the temperature profile, this inter-
face is associated with the first front observed from the right.

The values of the variables behind the reaction front are
greater than the values ahead of it. In particular, the stream
velocity behind the reaction front is positive. The amplitude
of all the variables are increasing with �. The second step of
the temperature profile is related to the heat propagation. It is
not a stationary front: on the left plateau of the step the
stream velocity u is negative, whereas it is positive on the
right plateau, so that the width of this second step increases
in time. These are the features of the solutions obtained for
��1.0.

The results obtained for a larger activation energy, �
=2.25, are given in Fig. 2. In this case, two stationary fronts
propagate to the right: the first front corresponds to the heat
propagation, whereas the second front corresponds to the re-
action interface. The velocity Uh of the heat front is greater
than the velocity U of the reaction front. The heat front
moves to the unperturbed steady state ��0, u=0, T0, a=0�
and the values of �, u, and p are greater behind it. The
amplitudes of the heat front decrease with �, which results in
a decrease of its velocity. The values of �, u, and p behind
the reaction front are smaller than ahead of it. This type of
behavior is observed for �	1.7.

In both ranges of activation energies the temperature pro-
file possesses two other fronts that propagate to the left in the
region containing only component A. The third traveling
front moves in a region where u and p are constant: it moves
with a small speed given by this constant negative stream
velocity. The fourth front is a heat front which propagates to
the unperturbed steady state ��0, u=0, T0, a=��.

A straightforward generalization of the expression of the
marginal speed to an exothermic reaction leads to U0�T�
=2�k�T��d�T�, where T is the temperature in the leading
edge. Figure 3 gives the speed U of the reaction front vs the
activation energy �. The front speed can be defined in the
two separated intervals of �. In the range ��1.0, the fast
reaction front propagates toward the unperturbed steady state
and the marginal velocity U0�T0� gives a fairly good approxi-
mation to the front speed. In the second range, �	1.7, posi-
tive deviations from the marginal speed U0�T1� are observed,
where T1 is the value of the temperature ahead of the reac-
tion front. They vanish as � increases, because the perturba-
tion induced by the heat front becomes smaller as it escapes
more rapidly from the slower reaction interface.

In the intermediate range of activation energies, �
� �1.1,1.65�, the numerical calculations lead to nonstation-

FIG. 1. Numerical solution to Eqs. �2�–�5� for �
=0.007 942 201 044 98, Q=0.04kBT0, kBT0=1, and �=0.5. Solid
line corresponds to stream velocity u, dashed line to kB�T−T0�, and
dotted line to reactive interface a /�.

FIG. 2. Same caption as Fig. 1 but �=2.25.
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ary solutions. Due to the accumulation of heat in the reaction
zone, peaks that broaden with time appear in the profiles of
u, �, and T. However, the reactive interface a /� moves with
a constant velocity that does not change with the activation
energy and remains close to the value reached by the station-
ary front for �=1.0. We examine this phenomenon analyti-
cally in the next section.

TRAVELING FRONTS

We consider the stationary reaction fronts moving to the
right at speed U. The values of the hydrodynamic variables
on the plateaus associated with the front are denoted by �i,
ui, pi, and ai, with i=1 ahead of the front and i=2 behind it.
For the reaction front one has a2=�2. When we switch to the
frame moving with the front, the stream velocity becomes
v=u−U.

In the moving frame Eqs. �2�–�5� lead to the following
Hugoniot relations �25,22�:

�2v2 = �1v1, �6�

p2 + m�2v2
2 = p1 + m�1v1

2, �7�

3

2
kBT2 +

m

2
v2

2 +
p2

�2
− Q =

3

2
kBT1 +

m

2
v1

2 +
p1

�1
. �8�

Then the height �u=v2−v1 of the stream velocity obeys

4mv1��u�2 + �3m�v1�2 − 5T1kB��u + 2Qv1 = 0. �9�

This equation does not have real roots if v1� �v1+ ,v1−�
where

v1± = −�15T1kB + 16Q ± 4�2Q�15T1kB + 8Q�
9m

. �10�

The solutions �u of Eqs. �9� are negative if v1
v1+ and
positive if v1�v1−.

We first apply these results to the reaction front propagat-
ing to the unperturbed steady state, i.e., for u1=0, T1=T0,
and �u=u2. The forbidden interval of stream velocities
�v1+ ,v1−� ahead of the front results in a forbidden interval of
reaction front velocities �U− ,U+� where U−=−v1− and U+=
−v1+. Figure 4 presents the dependence of the height �u of
the stream velocity front vs the reaction front velocity U. The
analytical solutions �u of Eq. �9� for U	U+ are compared to
the values u2 of the stream velocity behind the reaction front
obtained when solving numerically Eqs. �2�–�5� for ��1. In
the case of the reaction front propagating behind the heat
front, the values of v1 and T1 obtained numerically for �
	1.7 are introduced in Eq. �9�. Then we are able to compare
the solutions of Eq. �9� for U�U− with the numerical values
of �u. Using Eq. �10� for T1=T0, we find that the greater
critical value of the reaction front velocity is U+�1.4932. To
compute the smaller critical value U−, we assume T1�T0
and v1�−U. It gives U−�1.1161. As shown in Fig. 4, the
analytical results confirm the noncontinuous dependence of
the height �u on the reaction front velocity U.

It is noteworthy that in the intermediate range of activa-
tion energies, �� �1.1,1.65�, the propagation speed of the
reactive interface, a /�, remains constant and close to U+, as
presented in Fig. 3.

We use the same approach to describe the heat front
propagating ahead of the reaction front at velocity Uh. In this
case, Q=0, T1=T0, v1=−Uh and Eq. �9� has always two real
solutions given by

�u =
3mUh

2 − 5T0kB

4mUh
, �u = 0. �11�

The height �u of the stream velocity front is positive for
velocities Uh�Us where Us=�5T0kB /3m is the sound speed

FIG. 3. Front velocities vs activation energy �. Solid line and
dashed line correspond to marginal velocity U0�T� of isothermal
Fisher front for T=T0 and T=T1, respectively �T1 is the value of
temperature ahead of the numerically obtained reaction front�. Solid
circles corresponds to reaction front velocities obtained in numeri-
cal solution of Eqs. �2�–�5�. Open circles give velocities of reacting
interface for nonstationary solutions. Horizontal long-dashed line
and short-dashed line give critical reaction front velocities U+ and
U−, respectively. Horizontal dotted line gives sound speed Us at T0.
Open triangles correspond to heat front velocities obtained in nu-
merical solution of Eqs. �2�–�5�.

FIG. 4. Height �u of stream velocity front corresponding to
reaction front vs reaction front velocity U. Solid line gives solution
to Eq. �9� for T1=T0 and v1=−U. Solid circles correspond to nu-
merical solution to Eqs. �2�–�5�.
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at T0. As shown in Fig. 3, the velocity of the heat front
deduced from the numerical solutions of Eqs. �2�–�5� reaches
Us for large activation energies �	1.7. The forbidden inter-
val �U− ,U+� of reaction front velocities encloses the sound
speed Us.

For a small value of the reaction heat Q we have proven
that stationary reaction fronts exist for either large or small
propagation velocities. According to Eq. �10�, the forbidden
interval of reaction front speeds increases with Q so that
stationary solutions exist only either for extremely fast reac-
tion fronts or sufficiently slow fronts, i.e., large activation
energies. Experimental validations could involve conforma-
tional isomers identified by their infrared spectra. The orders
of magnitude of the activation energy and heat release are in
the relevant range for the rotamers of protonated alanine
dipeptide �26�. To investigate the behavior at higher Q’s, the
autocatalytic isomerization of n-butene into isobutene �27�
could be considered. The knowledge of the specific chemical
mechanism is not required: the invariants given in Eqs.
�6�–�8� do not depend on the chemical term R, and the results
of this work are valid for any chemical front.

CONCLUSION

In this paper, we solve numerically the hydrodynamic
equations governing the evolution of the exothermic Fisher
front. We observe two qualitatively different behaviors de-
pending on whether the reaction front propagates sufficiently
faster or slower than the sound speed at the initial tempera-
ture. For a large velocity the reaction front propagates to the
unperturbed steady state with the marginal velocity U0 of the
isothermal case. For a small velocity the heat front precedes
the reaction front and positive deviations from U0 appear. A
gap of reaction front velocities around the sound speed is
observed when the activation energy is continuously in-
creased. We analytically prove the existence of a forbidden
interval of reaction front velocities for which traveling fronts
cannot exist. The length of this interval increases with the
heat of the reaction.
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